
Speed Kills: Exploring Security
Aspects of Edge AI Accelerators

Presenter: Srihari Danduri

• What are Edge AI Accelerators?
• Why inference speed is crucial for these

devices?
• What are NPU's (Neural Processing Units) ?
• In the Image, below big square heatsink is

SOC (System on chip).

This is where your OS(Linux)
and Applications Run

Any Illegal operation done
by Application is restricted
by OS

Application Machine
learning workloads are
offloaded to NPU for
processing

No OS protections when
executing Application
Machine learning
workloads

Host Memory, Shared between co-processor and
Application Processor

High-level flow from Application to NPU Hardware

Link to official slides from NXP: slides

https://static.linaro.org/connect/lvc21/presentations/lvc21-113.pdf

Link to official slides from NXP: slides

https://static.linaro.org/connect/lvc21/presentations/lvc21-113.pdf

Let's Understand System Design
(Application all the way to NPU Hardware)

tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model, resolver)(&interpreter);

auto delegates = delegate_providers.CreateAllDelegates();

for (auto& delegate : delegates) {

const auto delegate_name = delegate.provider->GetName();

if (interpreter->ModifyGraphWithDelegate(std::move(delegate.delegate)) !=

kTfLiteOk) {

LOG(ERROR) << "Failed to apply " << delegate_name << " delegate.";

exit(-1);

} else {

LOG(INFO) << "Applied " << delegate_name << " delegate.";

}

}

for (int i = 0; i < settings->loop_count; i++) {

if (interpreter->Invoke() != kTfLiteOk) {

LOG(ERROR) << "Failed to invoke tflite!";

exit(-1);

}

}

Check source code here link

Luanch Application to use NPU

export USE_GPU_INFERENCE=0

gdb --nx --args ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt --
external_delegate_path=/usr/lib/libvx_delegate.so

https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/examples/label_image/label_image.cc

Let's Understand System Design
(Application all the way to NPU Hardware)

Input Buffer (1x224x224x3)

Output buffer 1x1001

Contiguous in User Virtual address space

Mobilenet model

Memory Overview

• NPU Platform Drivers probe for supported hardware coming in
from the device tree and then allocate and construct page tables.

• These allocated page tables are part of DMA zone.
• The base address of these pagetables are programmed in to

MMIO(Memory Mapped regions) of NPU so it know where to do
page walk during address translation.

NPU Virtual Address

NPU Platform Drivers

NPU Character Drivers

• Ioctl calls are performed to carveout address space for mapping
reserved regions in to user process.

• Application runtime uses this mmapped reserved region to
construct command buffers.

• Using Ioctls these command buffers are submitted to NPU to
perform computation.

• Ioctl calls are performed to do on-demand page mapping of user
buffer pages into NPU pagetables. Also marks those physical
pages for DMA capable so DMA controller does the copying.

Putting all together

Demo Time

Recorded video

Incase of a live demo disaster

• To run the previous exploit, all you need is 4 bytes of stack
corruption.

• Nothing fancy prerequisites to be met to do confused deputy-style
attacks using NPU.

• In our case user application can be malicious or it can be a
compromised user.

• To Optimize for Inference speed, vendors used a design with
shared memory that can be accessible by the Application, Kernel,
and NPU hardware.

• Here input, output buffers and reserved memory act as shared
memory for all three.

• Do as much Application -→ NPU communication as possible to
reduce the overhead of going through Kernel.

• Flat mapping entire regions of memory for speed, this choice only
increases the attack surface.

Shortcuts in System design

• On the host each process has its own page tables thereby there is clear separation between processes

and the host processor knows what physical memory ranges a process has access to.

• whereas as in NPU there is one set of page tables shared by all processes which kernel driver

programs entries, and there is no <process, memory regions it can access information>

• The processing is on a command basis and there is no <processid, command> relationship

understood by NPU. Multiple processes can issue commands, and NPU is a shared resource.

• Even if you have protections against kernel memory, there will always be cross-process

contamination.

Security Properties Schematic gap between host and NPU:

Proposed Solutions

• Kernel driver Sanitization: Have the kernel driver sanitize all the
command buffers before committing to the co-processor. They might
have to open out the closed source code of command buffer
construction and all address offsets in it, and implement sanitization in
the kernel driver.

• GPU/NPU Firmware level-fix: Before reading/writing values to and
from physical memory have the co-processor send a request to the host
processor to confirm the validity of the regions for a given command.

Thank you

	Slide 1: Speed Kills: Exploring Security Aspects of Edge AI Accelerators
	Slide 2
	Slide 3
	Slide 4
	Slide 5: High-level flow from Application to NPU Hardware
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Let's Understand System Design (Application all the way to NPU Hardware)
	Slide 10
	Slide 11
	Slide 12: NPU Character Drivers
	Slide 13
	Slide 14
	Slide 15: Demo Time
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Proposed Solutions
	Slide 20

