Speed Kills: Exploring Security
Aspects of Edge Al Accelerators

Presenter: Srihari Danduri

* What are Edge Al Accelerators?

* Whyinference speedis crucial for these
devices?

* What are NPU's (Neural Processing Units) ?

* Inthe Image, below big square heatsinkis
SOC (System on chip).

CAN1

00-04-8F- 00-04.9F- i
08-38-A8 08:38-A9 dis

5

What is a confused deputy problem? A

In information security, a confused deputy is a computer program that is tricked by
another program (with fewer privileges or less rights) into misusing its authority on the
system. It is a specific type of privilege escalation.

Wikipedia
https://en.wikipedia.org » wiki » Confused_deputy_pro...

Host Memory, Shared between co-processor and
Application Processor

This is where your OS(Linux)

Battery Ctrl JTAG Crystal&
LPDDRA4/DDR4 Device (IEEE1149.6) Clock Source . .
I ¥ and Applications Run
Y i
eMMC5.0 | I |External Memory :ﬂr;’ncg;ng)l(a‘;g?m < Clock & Reset
FLASH I DAP I l PLLs I .
S| CTis v Any Illegal operation done
|NAND FLASH |<—— [GpwiascH || [sJC [cerc | K i X .
T — SRC by Application is restricted
e 4| EEelxaa
Flash NEON |[CRYPTO| RC ose b OS
SCU & Timer Audio DSP Core y
miernal emory L2 Cache 512 KB
[OCRAM 576KE] . DTCM 64KB
oCcRAM s3ekB]| | § Arm Cortex M7 TocrAM A 2sexe || [AP Peripherals
ROM 256KB £ Platiorm — SDHC(3)
5 len s 328
Security gg Nvic][FPU | [MPU St A US?Z?.D SDXC
Z TCM 256KB SDMA(3) UsE . . .
| B2 ' T || 1] womosy | Application Machine
____ SPBAL) ABENET]| ol iy learning workloads are
Multi-Core Unit ;
[Roc][MU] ‘
Shared Peripherals CAN-FD(2 10/100/1000M
ey i Coowenore]| (T]| |romee Epseer] offloaded to NPU for
isplay Interface -
icSIVi [saie) | .
. _ Graphics/Video —
-« T UART@) —eeorI3) | PCle Bus proceSSIng
[_Lvos | VPU — PWM(4)
N =T | | e
m Machine Learning lMl
el |F——= NPU Timers [GFioGx3) | .
Camera ISP(2) L_NPU__|
|] Power Management NO OS proteCtlonS When
HDMI Display [Fowizoa | [GPT6e)] . . .
Eows executing Application
Machine learning

Figure 1-1. Block Diagram workloads

High-level flow from Application to NPU Hardware

User Application

ML Framework
(Tensorflow Lite,ONNX,etc)

USER SPACE
Vendor Specific
Delegate Librarys
loctl
Accelerat
CREESTVION. € > NPU Hardware KERNEL SPACE

Character Drivers |

DELEGATE PARTITIONING

« Graph is partitioned based on op support

v
J i AveragePool -

Only Conv2D and
Concatenation
operations are
supported by our
delegate

Concatenation

Link to official slides from NXP: slides

Executed on the CPU

MaxPool
AveragePool

DELEGATED
PARTITION

Executed by the delegate

PUBLIC 8

https://static.linaro.org/connect/lvc21/presentations/lvc21-113.pdf

NN API DELEGATE

- Android C API designed to run machine
learning operations on Android devices

 Limited to float16, float32, int8 and uint8

- Supports acceleration on a GPU,
an NPU or a DSP depending on the
target device

TF Lite CPU fallback is
preferred, but it can be disabled
using setUseNnapiCpu in
NnApiDelegate.Options

CPU fallback <

Android NNAPI = —- = = = = = = = = =

CPU fallback = Android Neural Network Runtime

Hardware acceleration

Application

ML framework/library

Android NNHAL - - - =-=-=-= ===~

DSP Driver

Unified NPU/GPU Driver

i.MX8 microprocessors

PUBLIC 12

(TensorFlow Lite)

Link to official slides from NXP: slides

https://static.linaro.org/connect/lvc21/presentations/lvc21-113.pdf

Let's Understand System Design
(Application all the way to NPU Hardware)

Luanch Application to use NPU

tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model, resolver)(&interpreter);

export USE_GPU_INFERENCE=0

auto delegates = delegate_providers.CreateAllDelegates(); gdb --nx --args ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels. txt --

for (auto& delegate : delegates) { external_delegate_path=/usr/lib/libvx_delegate.so
constauto delegate_name = delegate.provider->GetName(); _ e :

S — @xaaaaasaflons M...uul ox40000 - /v;ume/;n ! (.‘m.‘.,,m,
if (interpreter->ModifyGraphWithDelegate(std::move(delegate.delegate)) |= ::???EES;@E giiiiﬁggggggg “3;333335) R R (o)
KTfLiteOk){ ; 220 5 s i

oxfffff5403000 axfffff541e000 0x1b8od 6x1f3000 --- JuUSTy Laby GAL <

oxfffff541e000 oxfffff5420000 0x2000 Ox1fepoo | Jusr/lib/1ibGAL .s0
LOG(ERROR) << "Failed to apply " de'.egate name << n delegate."' [} fff!!’u‘mmn n:ffff_f;lilehe 0x14000 0)(200202 o Jusr/lib/libGAL.so
exit(-1);
Yelse{

LOG(INFO) << "Applied " << delegate_name << " delegate.";
}
}

for (inti = 0;i < settings->loop_count; i++) { xeB0 _ 6x9 Aerres
exfffff75c8080 axfffff7sdeees 6x80800 B0xaB000 = /usr/lihllibvl:delegatasn
exfffff7sdeess axfffff7sdieee 6x1800 8xbBeaes -| Jusr/lib/libvx_delegate.so

. 3 . oxfffff75e0n00 axfffff776boed 6x18boe6 oxe Jusr/lib/libc.s0.6

if (interpreter->Invoke() != kTfLite Ok) { nen F1770000 A¥17088 Av1ANAGA = o

x18d!

LOG(ERROR) << "Failed to invoke tflite!";
exit(-1);

}

s T

€ ST ox1000 0x90000
} X 7ae0000 ax 83000 6x4a3000 oxe
exfffff7faseen exfffff7f980ee 8x15800 6x4a3600 ---

exfffff7faseen oxf 06 0x8000 “nerslib/libtensorflow-lite.so
€ x6860 X r/lib/libt =

exfffff7faneen 1 w Yita.50.2.15.

Check source code here link

https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/examples/label_image/label_image.cc

DepthwiseConv2D

weights
bias

Conv2D

Filter

DepthwiseConv2D

weights
bias 1

Conv2D

filter (1

DepthwiseConv2D

Mobilenet model

Let's Understand System Design
(Application all the way to NPU Hardware)

AveragePool2D

Conv2D

Filter
bias

Reshape

shape (2

Softmax

Reshape_1

Contiguous in User Virtual address space

Input Buffer (1x224x224x3)

Output buffer 1x1001

Memory Overview

Booting Linux on physical CPU []
Linux version 6.6.23-gb586a521770e-dirty (sri@sri-nuc) (aarch64-poky-linux-gcc (GCC) .2.0, GNU 1d (GNU Binutils)
KASLR disabled due to lack of seed
0.000000] Machine model: NXP i.MX8MPlus EVK board
0 | eti: UEFI not found.
] Reserved memory: created CMA memory pool at , Slze MiB
] OF: reserved mem: initialized node linux,cma, compatible id shared-dma-pool
] OF: reserved mem: @ { KiB) map reusable linux,cma
] OF: reserved mem: ole (KiB) nomap non-reusable ocram@
] OF: reserved mem: P KiB) nomap non-reusable optee core@
] OF: reserved mem: % (KiB) nomap non-reusable optee shm@57e00000
1 OF: rved mem: ate KiB) nomap non-reusable dsp@
] OF: reserved mem: o KiB) nomap non-reusable dsp reserved heap@
] OF: reserved mem: % KiB) nomap non-reusable vdevOvring0@942feeee
] OF: reserved mem: Ve KiB) nomap non-reusable vdevOvringl@942f8000
] Reserved memory: e JMA memory pool at , S1Z¢ MiB
] OF: reserved mem: initialized node vdev@buffer@ compatible id shared-dma-pool
.] OF: reserved mem: ok (KiB) nomap non-reusable vdevObuffer@
0.000000] OF: reserved mem: e (KiB) nomap non-reusable gpu reserved@
0.000000] NUMA: NO NUMA=eemfiguration found
] NUMA: Faking a node at [mem
] NUMA: NODE DATA [mem
:)01 _Zope ranges:
0.000000] DMA =y
v. 1 DMA32 empty
0.000000] Normal [mem
SNNRRRaIEMavastelZone start for each node
] Early memory node ranges
] node
] node
] node
] node
] node
] node :
] Initmem setup node LE

NPU Platform Drivers

* NPU Platform Drivers probe for supported hardware comingin
from the device tree and then allocate and construct page tables.

* These allocated page tables are part of DMA zone.

* The base address of these pagetables are programmed in to
MMIO(Memory Mapped regions) of NPU so it know where to do
page walk during address translation.

SSSSSSSSS

NNNNNNN

MMMMMMMMM

NPU Character Drivers

* |loctl calls are performed to carveout address space for mapping
reserved regions in to user process.

* Application runtime uses this mmapped reserved region to
construct command buffers.

* Using loctls these command buffers are submitted to NPU to
perform computation.

* |loctl calls are performed to do on-demand page mapping of user
buffer pages into NPU pagetables. Also marks those physical
pages for DMA capable so DMA controller does the copying.

Putting all together

GPU Page Tables NPUO Page Tables NPU1 Page Tables

Dma Zone Addr 1
Dma Zone Addr 2

Npu Reserved 1
Npu Reserved 2
IN Addr 1

IN Addr 1

Out Addr1
Qut Addr2

16 Megabyte Flat Mapped By Platform Driver

0x40_00_00_00 DMA-Zone Oxff_ff_ff_ff

16 Megabyte Flat Mapped By Platform Driver

SYSTEM MEMORY User Scatter/gather physical pages

NPU Reserved

User Buffers
A ¢ € Ptr Ptr IN IN IN
NPU Virtual Address Pointers Kernel+Application

User Command Buffers
ouT ouT

0x1_00_00_00_00 Ox01_Of_ff_ff_ff Ox01_bf_ff_ff_ff

Demo Time

Recorded video

Incase of a live demo disaster

* To run the previous exploit, all you need is 4 bytes of stack
corruption.

* Nothing fancy prerequisites to be met to do confused deputy-style
attacks using NPU.

* In our case user application can be malicious or it can be a
compromised user.

Shortcuts in System design

* To Optimize for Inference speed, vendors used a design with

shared memory that can be accessible by the Application, Kernel,
and NPU hardware.

* Here input, output buffers and reserved memory act as shared
memory for all three.

* Do as much Application €<--> NPU communication as possible to
reduce the overhead of going through Kernel.

* Flat mapping entire regions of memory for speed, this choice only
iIncreases the attack surface.

Security Properties Schematic gap between host and NPU:

On the host each process has its own page tables thereby there is clear separation between processes
and the host processor knows what physical memory ranges a process has access to.

whereas as in NPU there is one set of page tables shared by all processes which kernel driver
programs entries, and there is no <process, memory regions it can access information>

The processing is on a command basis and there is no <processid, command> relationship
understood by NPU. Multiple processes can issue commands, and NPU is a shared resource.

Even if you have protections against kernel memory, there will always be cross-process
contamination.

Proposed Solutions

« Kernel driver Sanitization: Have the kernel driver sanitize all the
command buffers before committing to the co-processor. They might
have to open out the closed source code of command buffer
construction and all address offsets in it, and implement sanitization in
the kernel driver.

* GPU/NPU Firmware level-fix: Before reading/writing values to and
from physical memory have the co-processor send a request to the host
processor to confirm the validity of the regions for a given command.

Thankyou

	Slide 1: Speed Kills: Exploring Security Aspects of Edge AI Accelerators
	Slide 2
	Slide 3
	Slide 4
	Slide 5: High-level flow from Application to NPU Hardware
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Let's Understand System Design (Application all the way to NPU Hardware)
	Slide 10
	Slide 11
	Slide 12: NPU Character Drivers
	Slide 13
	Slide 14
	Slide 15: Demo Time
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Proposed Solutions
	Slide 20

