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* What are Edge Al Accelerators?

* Whyinference speedis crucial for these
devices?

* What are NPU's (Neural Processing Units) ?

* Inthe Image, below big square heatsinkis
SOC (System on chip).
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What is a confused deputy problem? A

In information security, a confused deputy is a computer program that is tricked by
another program (with fewer privileges or less rights) into misusing its authority on the
system. It is a specific type of privilege escalation.

Wikipedia
https://en.wikipedia.org » wiki » Confused_deputy_pro...



Host Memory, Shared between co-processor and
Application Processor

This is where your OS(Linux)
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Figure 1-1. Block Diagram workloads



High-level flow from Application to NPU Hardware

User Application

ML Framework
(Tensorflow Lite,ONNX,etc)
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DELEGATE PARTITIONING

« Graph is partitioned based on op support

v
J i AveragePool -

Only Conv2D and
Concatenation
operations are
supported by our
delegate

Concatenation

Link to official slides from NXP: slides

Executed on the CPU

MaxPool
AveragePool

DELEGATED
PARTITION

Executed by the delegate
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https://static.linaro.org/connect/lvc21/presentations/lvc21-113.pdf

NN API DELEGATE

- Android C API designed to run machine
learning operations on Android devices

 Limited to float16, float32, int8 and uint8

- Supports acceleration on a GPU,
an NPU or a DSP depending on the
target device

TF Lite CPU fallback is
preferred, but it can be disabled
using setUseNnapiCpu in
NnApiDelegate.Options

CPU fallback <

Android NNAPI = —- = = = = = = = = =

CPU fallback = Android Neural Network Runtime

Hardware acceleration

Application

ML framework/library

Android NNHAL - - - =-=-=-= ===~

DSP Driver

Unified NPU/GPU Driver

i.MX8 microprocessors
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(TensorFlow Lite)

Link to official slides from NXP: slides



https://static.linaro.org/connect/lvc21/presentations/lvc21-113.pdf

Let's Understand System Design
(Application all the way to NPU Hardware)

# Luanch Application to use NPU

tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*model, resolver)(&interpreter);

export USE_GPU_INFERENCE=0

auto delegates = delegate_providers.CreateAllDelegates(); gdb --nx --args ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels. txt --

for (auto& delegate : delegates) { external_delegate_path=/usr/lib/libvx_delegate.so
constauto delegate_name = delegate.provider->GetName(); _ e :

S — @xaaaaasaflons M...uul ox40000 - /v;ume/;n ! (.‘m.‘.,,m,
if (interpreter->ModifyGraphWithDelegate(std::move(delegate.delegate)) |= ::???EES;@E giiiiﬁggggggg “3;333335 ) R R (o)
KTfLiteOk){ ; 220 5 s i

oxfffff5403000 axfffff541e000 0x1b8od  6x1f3000 --- JuUSTy Laby GAL <

oxfffff541e000 oxfffff5420000 0x2000 Ox1fepoo | Jusr/lib/1ibGAL .s0
LOG(ERROR) << "Failed to apply " de'.egate name << n delegate."' [} fff!!’u‘mmn n:ffff_f;lilehe 0x14000 0)(200202 o Jusr/lib/libGAL.so
exit(-1);
Yelse{

LOG(INFO) << "Applied " << delegate_name << " delegate.";
}
}

for (inti = 0;i < settings->loop_count; i++) { xeB0 _ 6x9 Aerres
exfffff75c8080 axfffff7sdeees 6x80800 B0xaB000 = /usr/lihllibvl:delegatasn
exfffff7sdeess axfffff7sdieee 6x1800 8xbBeaes -| Jusr/lib/libvx_delegate.so

. 3 . oxfffff75e0n00 axfffff776boed  6x18boe6 oxe Jusr/lib/libc.s0.6

if (interpreter->Invoke() != kTfLite Ok) { nen F1770000  A¥17088  Av1ANAGA = o

x18d!

LOG(ERROR) << "Failed to invoke tflite!";
exit(-1);

}

s T

€ ST ox1000 0x90000
} X 7ae0000 ax 83000 6x4a3000 oxe
exfffff7faseen exfffff7f980ee 8x15800 6x4a3600 ---

exfffff7faseen oxf 06 0x8000 “nerslib/libtensorflow-lite.so
€ x6860 X r/lib/libt =

exfffff7faneen 1 w Yita.50.2.15.

Check source code here link



https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/examples/label_image/label_image.cc

DepthwiseConv2D

weights
bias

Conv2D

Filter

DepthwiseConv2D

weights
bias 1

Conv2D

filter (1

DepthwiseConv2D

Mobilenet model

Let's Understand System Design
(Application all the way to NPU Hardware)
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Memory Overview

Booting Linux on physical CPU [ ]
Linux version 6.6.23-gb586a521770e-dirty (sri@sri-nuc) (aarch64-poky-linux-gcc (GCC) .2.0, GNU 1d (GNU Binutils)
KASLR disabled due to lack of seed
0.000000] Machine model: NXP i.MX8MPlus EVK board
0 | eti: UEFI not found.
] Reserved memory: created CMA memory pool at , Slze MiB
] OF: reserved mem: initialized node linux,cma, compatible id shared-dma-pool
] OF: reserved mem: @ { KiB) map reusable linux,cma
] OF: reserved mem: ole ( KiB) nomap non-reusable ocram@
] OF: reserved mem: P KiB) nomap non-reusable optee core@
] OF: reserved mem: % ( KiB) nomap non-reusable optee shm@57e00000
1 OF: rved mem: ate KiB) nomap non-reusable dsp@
] OF: reserved mem: o KiB) nomap non-reusable dsp reserved heap@
] OF: reserved mem: % KiB) nomap non-reusable vdevOvring0@942feeee
] OF: reserved mem: Ve KiB) nomap non-reusable vdevOvringl@942f8000
] Reserved memory: e JMA memory pool at , S1Z¢ MiB
] OF: reserved mem: initialized node vdev@buffer@ compatible id shared-dma-pool
. ] OF: reserved mem: ok ( KiB) nomap non-reusable vdevObuffer@
0.000000] OF: reserved mem: e ( KiB) nomap non-reusable gpu reserved@
0.000000] NUMA: NO NUMA=eemfiguration found
] NUMA: Faking a node at [mem
] NUMA: NODE DATA [mem
: )01 _Zope ranges:
0.000000] DMA =y
v. 1 DMA32 empty
0.000000] Normal [mem
SNNRRRaIEMavastelZone start for each node
] Early memory node ranges
] node
] node
] node
] node
] node
] node :
] Initmem setup node LE




NPU Platform Drivers

* NPU Platform Drivers probe for supported hardware comingin
from the device tree and then allocate and construct page tables.

* These allocated page tables are part of DMA zone.

* The base address of these pagetables are programmed in to
MMIO(Memory Mapped regions) of NPU so it know where to do
page walk during address translation.
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NPU Character Drivers

* |loctl calls are performed to carveout address space for mapping
reserved regions in to user process.

* Application runtime uses this mmapped reserved region to
construct command buffers.

* Using loctls these command buffers are submitted to NPU to
perform computation.

* |loctl calls are performed to do on-demand page mapping of user
buffer pages into NPU pagetables. Also marks those physical
pages for DMA capable so DMA controller does the copying.






Putting all together
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Demo Time

Recorded video

Incase of a live demo disaster




* To run the previous exploit, all you need is 4 bytes of stack
corruption.

* Nothing fancy prerequisites to be met to do confused deputy-style
attacks using NPU.

* In our case user application can be malicious or it can be a
compromised user.



Shortcuts in System design

* To Optimize for Inference speed, vendors used a design with

shared memory that can be accessible by the Application, Kernel,
and NPU hardware.

* Here input, output buffers and reserved memory act as shared
memory for all three.

* Do as much Application €<--> NPU communication as possible to
reduce the overhead of going through Kernel.

* Flat mapping entire regions of memory for speed, this choice only
iIncreases the attack surface.



Security Properties Schematic gap between host and NPU:

On the host each process has its own page tables thereby there is clear separation between processes
and the host processor knows what physical memory ranges a process has access to.

whereas as in NPU there is one set of page tables shared by all processes which kernel driver
programs entries, and there is no <process, memory regions it can access information>

The processing is on a command basis and there is no <processid, command> relationship
understood by NPU. Multiple processes can issue commands, and NPU is a shared resource.

Even if you have protections against kernel memory, there will always be cross-process
contamination.



Proposed Solutions

« Kernel driver Sanitization: Have the kernel driver sanitize all the
command buffers before committing to the co-processor. They might
have to open out the closed source code of command buffer
construction and all address offsets in it, and implement sanitization in
the kernel driver.

* GPU/NPU Firmware level-fix: Before reading/writing values to and
from physical memory have the co-processor send a request to the host
processor to confirm the validity of the regions for a given command.



Thankyou
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